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Abstract
We report the time dependent response of electrical resistivity in the non-magnetic perovskite
oxide NdNiO3 in its phase separated state and provide a physical explanation of the
observations. We also model the system and make an accurate Monte Carlo simulation of the
observed behavior. While cooling, a phase separation takes place in the system below its
metal–insulator transition temperature and in this state the material exhibits various dynamical
phenomena such as relaxation of resistivity, dependence of resistivity on cooling rate and
rejuvenation of the material after ageing. These phenomena signal that the phase separated state
of NdNiO3 is not in thermodynamic equilibrium, and we conjecture that it consists of
supercooled paramagnetic metallic and antiferromagnetic insulating phases. The supercooled
phases are metastable and they switch over to the insulating equilibrium state stochastically, and
this can account for the slow dynamics observed in our system. We also verify the predictive
power of our model by simulating the result of a new experiment and confirming it by actual
measurements.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Usually hard condensed matter is associated with fast
dynamics, but sometimes we also see slow dynamics,
particularly in cases such as glasses, spin glasses, phase
separated systems etc. Dynamics of glasses and spin glasses
have been intensively studied from the middle of last century,
but such studies on phase separated systems started attracting
a good deal of attention from physicists only towards the
end of last century. Phase separation always seems to be
associated with a broadened first order phase transition and it
has been observed in such systems as transition metal oxides,
a famous example being the colossal magnetoresistance
(CMR) manganites, and alloys which show martensitic phase
transitions [1–5].

There have been a large number of studies on the
phase separated states associated with a broad first order
metal–insulator (M–I) transition in transition metal oxides

such as VO2, CMR manganites, the rare earth nickelate
PrNiO3, the cobaltite La1−xSrx CoO3 etc. They exhibit unusual
phenomena such as very slow relaxation of resistivity [6–11]
and magnetization [12, 13], rejuvenation of resistivity after
ageing and dependence of physical properties on cooling
rate [8, 14–16]. A significant amount of work has gone in
to study these systems in detail, but they are not, as yet,
well understood, even though there is a recognition that the
phenomena described above originate from phase separation.
The presence of the slow glass-like relaxations in the above
systems has led many people to consider the phase separated
systems as spin glasses or cluster glasses, and it has been
argued that magnetic interactions are responsible for the
observed glass-like dynamics in these systems [4, 13]. The
above picture has been proposed for magnetic systems, but
similar phenomena have been seen in non-magnetic systems
as well [6, 9]. This raises the possibility that a spin-glass-
like model may not be the most appropriate to describe the
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dynamics of phase separation in general. There has been
another attempt to describe these phenomena in manganites
in terms of a phenomenological model, where it has been
proposed that the phase boundaries relax through a hierarchy
of energy barriers [8, 12]. Although this is a commendable
attempt, we feel that this model does not really capture the
essence of the phenomena because it does not consider what
happens to the system while heating. There has been a more
recent approach to understand the dynamics of phase separated
systems based on the concept of kinetic arrest of a supercooled
system into a magnetic glass and its subsequent de-arrest on
warming [11, 15]. But there are systems which are non-
magnetic and non-glassy and it would be very fruitful to make
an attempt to find out the physics behind the slow dynamics
in such systems, because what it might reveal may turn out to
have wider implications [6, 17, 18].

The perovskite oxide NdNiO3, which undergoes a
temperature driven M–I transition and has an associated phase
separated state [19], we believe, can be taken as a model system
to probe the dynamics of coexisting phases in non-magnetic,
non-glassy systems. NdNiO3 is a clean system which does
not require any doping to see the phase separated state, is
essentially unaffected by the application of a magnetic field
and does not show any evidence of a glass transition [20, 21].
Moreover, the phase separated state exists over a relatively
large temperature range, which makes it easy to study slow
dynamics and phase separation.

NdNiO3 is a member of the series of compounds known
as rare earth nickelates (RNiO3), which are one of the few
families of perovskite oxides that undergo a first order metal–
insulator phase transition [22]. These compounds crystallize
in an orthorhombically distorted perovskite structure with
space group Pbnm . The ground state of the nickelates
(R �= La) is insulating [22, 23], charge ordered [24–28]
and antiferromagnetic [29]. On increasing temperature from
absolute zero these compounds undergo a temperature driven
antiferromagnetic to paramagnetic transition, and an insulator
to metal transition. Below the M–I transition temperature, TMI,
the transport properties of NdNiO3 exhibit a large hysteresis
and in this region the physical state of the system is phase
separated and it has been shown to consist of paramagnetic
metallic and antiferromagnetic insulating phases [19, 22].

In this work we use careful time and temperature
dependent resistivity measurements on NdNiO3 to gain an
understanding of its phase separated state and its dynamics.
The phase separated state comes into existence on cooling
the material below its M–I transition temperature, vanishes at
sufficiently low temperature and does not form at all during
subsequent heating. We have provided a credible physical
explanation along with a Monte Carlo simulation to describe
the behavior exhibited by our system. The simulation results
are found to reproduce the experimental results quite well. Our
results indicate that in the phase separated state of NdNiO3

the metallic phase is present in its supercooled state. The
supercooled metallic phase is metastable and it relaxes to the
insulating equilibrium state giving rise to the various observed
phenomena.

2. Experimental details

Polycrystalline NdNiO3 samples in the form of 6 mm diameter
and 1 mm thick pellets were prepared and characterized as
described elsewhere [30]. The preparation method uses a high
temperature of 1000 ◦C and a high oxygen pressure of 200 bar.

All the temperature and time dependent measurements
were made in a home made cryostat. To avoid thermal
gradients in the sample during measurement it was mounted
inside a thick-walled copper enclosure so that during the
measurement the sample temperature would be uniform. It
was found that mounting the sample in this fashion improved
the reproducibility of the time dependence measurements
significantly. A Lakeshore Cryotronics temperature controller
was used to control the temperature, and the temperature
stability was found to be better than 3 mK during constant
temperature measurements.

Below TMI (≈200 K), NdNiO3 is not in thermodynamic
equilibrium and slowly relaxes, because of which the
experimental data that we get depend on the procedure used
for the measurement. The procedure we used was as follows.
While cooling we start from 300 K, and then record the data in
steps of 1 K after allowing the temperature to stabilize at each
point for about 30 s.3 In between two temperature points the
sample is cooled at a fixed cooling rate of 2 K min−1. After
the cooling run is over we wait for 1 h at 82 K and then the
heating data are collected at every 1 K interval. The heating
rate between temperature points was the same as the cooling
rate used earlier. This cycle of measurements was also repeated
with a different cooling and heating rate of 0.2 K min−1.

It was observed that the resistivity above 200 K and below
115 K does not show any time dependence, and it is also
independent of measurement history. Thus, to avoid the effect
of any previous measurements, all time dependent experiments
in the cooling run were done as follows: first take the sample
to 220 K (sufficiently above 200 K), wait for half an hour, then
cool at 2.0 K min−1 to the temperature of interest and once the
temperature has stabilized record the resistance as a function
of time. In the heating run the time dependent resistivity was
done in a similar fashion: first take the sample to 220 K, wait
for half an hour, then cool at 2.0 K min−1 to 85 K, wait for 1 h,
and then heat at 2.0 K min−1 to the temperature of interest, and
once the temperature has stabilized record the resistance as a
function of time.

The four probe van der Pauw method was used to measure
the resistivity, and standard precautions, such as current
reversal to take care of stray emfs, were taken during the
measurement. We also took care to ensure that the measuring
current was not heating up the sample.

3. Results

Figure 1 shows the electrical resistivity of NdNiO3 as a
function of temperature. The resistivity plot indicates that

3 30 s is the time spent for temperature stabilization and 30 s is the time
required for a 1 K temperature drop for a cooling rate of 2 K min−1. So the
effective cooling rate becomes 1 K min−1. We call this cooling rate 2 K min−1

nominally.
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Figure 1. ρ versus 1/T plot for NdNiO3. The blue circles represent
cooling data and the red squares stand for heating data
(cooling/heating rate 2.0 K min−1). The solid line is a least square fit
to the band-gap insulator model below 115 K. The curves labeled a,
b and c were taken as described in the text. The accuracy of the data
points is better than 1% everywhere. The error does not exceed
0.8 m� cm anywhere. The inset shows ρ versus 1/T for three
different cooling rates: lower curve (blue stars), 2 K min−1; middle
curve (red circles), 0.2 K min−1; upper curve (black pluses),
infinitely slowly (explained in text). The connecting lines are to
guide the eyes.

NdNiO3 undergoes a relatively sharp M–I transition at about
200 K while heating, with a width of about 10 K. In
contrast, while cooling the resistivity shows a rather broad
M–I transition centered around 140 K with a spread of about
40 K. At low temperature the log ρ versus 1/T plot is linear.
This indicates that the sample becomes insulating and, if the
activation energy is �, the resistivity should follow the relation

ρ(T ) = ρ0e
�

kB T . (1)

Below 115 K both the heating and the cooling data fit quite
well to this model, with a coefficient of determination, R2 =
0.999 55. ρ0 and � for the insulating region turn out to be
99 m� cm and 42 meV respectively, which are in reasonable
agreement with the values previously reported [19].

We collected more hysteresis data with different minimum
temperatures such as 140, 146 and 160 K. In these
measurements we cool the sample from 220 K to one of the
minimum temperatures mentioned above and then heat it back
to 220 K, both operations being carried out at a fixed rate of
2 K min−1. Loops formed in this fashion are called minor
loops and these are indicated by the labels a, b and c in
figure 1. In the cooling cycle all three minor loops coincide
with the cooling curve of the full hysteresis loop. In the heating
cycle, for loops a and b with lower minimum temperatures,
the resistivity decreases with increasing temperature and joins
the full loop at 200 K. In the case of loop c, as we increase

Figure 2. Time dependence of resistivity while cooling, at various
temperatures in the range 140–155 K, for a period of 1 h. The
maximum time dependence is seen at 145 K, which is about 200%.
The curve at the bottom, which looks like a horizontal straight line,
shows the increase in resistivity in a heating run taken at 145 K, and
the total change for 1 h in this case is less than 0.2%. Not all the data
are shown here to avoid clutter.

the temperature, the resistivity increases somewhat till about
188 K and then it falls and joins the full loop at 200 K.

The resistivity also shows a noticeable dependence on the
rate of temperature change in the cooling cycle as shown in the
inset of figure 1. The data for the lowest curve was collected
at 2 K min−1 and for the middle curve at 0.2 K min−1. The
uppermost curve is an estimate obtained by extrapolating the
time dependence data shown in figure 2 to infinite time. We
did not see any dependence on rate of change of temperature
when heating from 80 to 220 K. This means that while cooling,
below the M–I transition temperature (200 K), the system is not
in equilibrium, and on the other hand while heating the system
is either in, or very close to, equilibrium. These observations
are corroborated by the data shown in figure 2.

A subset of the time dependent resistivity data taken while
cooling is shown in figure 2. The data are presented as
ρ(t)/ρ(t = 0) so that the values are normalized to unity at
t = 0 for easy comparison. We found that below 160 K the
resistivity of the sample increases with time considerably. A
maximum relative increase in resistivity of about 200% for a
duration of 1 h is seen at 145 K, the time dependence being
lower both above and below this temperature. We fitted the
ρ(T, t) curves in figure 2 to the stretched exponential function

ρ(t) = ρ0 + ρ1

(
1 − e−( t

τ
)γ

)
(2)

where ρ0, ρ1, τ and γ are fit parameters. The fits are quite
good, with the R2 value greater than 0.999 in most cases.
See table 1. We note that the exponent γ lies in the range
0.5 < γ < 0.6 and τ has a peak around 147.5 K. The
variation of resistivity with time shows that the system slowly
evolves towards an insulating state at a constant temperature.
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Table 1. Fit parameters for the time dependence data shown in
figure 2. The degrees of freedom of the fits DOF ≈ 1000. The
χ2/DOF for 150 and 155 K are too small, indicating that we have
overestimated the error in resistivity in these cases. Anyway, we note
that the R2 values are consistently good and indicate reasonably good
fits.

# T (K) ρ1/ρ0 τ (103 s) γ χ2/DOF R2

1 140.0 0.764(5) 1.52(1) 0.538(3) 9.5 0.999 71
2 142.5 1.89(1) 2.02(2) 0.554(2) 5.9 0.999 81
3 145.0 4.59(3) 5.05(5) 0.567(1) 0.67 0.999 93
4 147.5 3.39(6) 7.9(3) 0.568(3) 0.51 0.999 78
5 150.0 1.22(1) 4.04(6) 0.582(2) 0.0014 0.999 88
6 155.0 0.391(5) 2.6(1) 0.557(7) 0.0003 0.998 45

We collected data up to 12 h (not shown here) to check whether
the system reaches an equilibrium state, but found that it was
continuing to relax even after such a long time.

As can be seen from figure 2 the magnitude of time
dependence in heating runs (maximum ≈ 0.2%) is negligible
compared to what one gets in cooling runs (maximum ≈
200%), which suggests that in the heating run, below TMI, the
sample is almost fully insulating and stable.

Figure 3 compares the resistivity in a cooling run with and
without intermediate ageing. These data were taken as follows:
we start from 220 K, come down to 160 K at 2 K min−1, collect
time dependence data for 1 h, resume cooling at 2 K min−1

and go down to 155 K, collect resistivity time dependence
again for 1 h and so on down to 110 K for every 5 K
interval. We note that when cooling is resumed after ageing
for an hour the ρ(T ) curve merges smoothly with the curve
obtained without ageing within a few kelvin. A rather similar
observation has been reported in the phase separated manganite
La0.5Ca0.5Mn0.95Fe0.05O3 [8].

4. Discussion

We have seen that, below TMI, while cooling, the system is
not in equilibrium and evolves with time, which suggests that
it is in a metastable state, or, possibly, it consists of at least
one metastable constituent. We infer that the resistivity of
this metastable constituent slowly increases with time, which
probably implies that a slow metal to insulator transition is
going on in the system. On the other hand, while heating
up from low temperature we saw that the system remains
insulating all the way up to 188 K and then it transforms
to the metallic state by 200 K. The resistivity was found
to have negligible time dependence during the whole of the
heating run. This result suggests that while heating from low
temperature the system is in a stable equilibrium state.

It is well known that below a phase transition temperature
a high temperature phase can survive as a metastable
supercooled state. Based on this information we propose that
below the M–I transition temperature, in the hysteresis region,
our system consists of supercooled (SC) metallic regions and
stable insulating regions. A supercooled metallic region would
be separated from its stable insulating state by an energy barrier
which can be crossed with the help of perturbations such
as thermal fluctuations, mechanical disturbances and so on.

Figure 3. Temperature dependence of ρ on cooling with ageing by
intermediate stops of 1 h each (magenta open circles) at 155, 150,
145, 140, 135 and 130 K. The black line shows the resistivity without
ageing. The blue dashed line shows the results of the simulation
discussed in section 4.4.

The crossing of the barrier from the metallic state into a
stable insulating state can give rise to time dependence of
resistivity in the system. Now, it is known that, on cooling
a supercooled system it can either switch to a stable state
or get kinetically arrested into a glassy state. From the fact
that no time dependence is observed while heating from low
temperature towards the M–I transition temperature we rule out
the possibility of any glassy phases forming in the system. For,
if a glassy phase did form, time dependence would have been
observed while heating from low temperature because of the
de-arrest of the same. Consequently, we are forced to conclude
that the supercooled phases which are present while cooling
would switch to the stable insulating state at a sufficiently low
temperature. At a low enough temperature all of the material
would be in the stable insulating state and hence subsequent
heating would not show any time dependence.

Based on the fact that no time dependence is observed
above the M–I transition temperature while heating, we rule
out the possibility of the existence of superheated phases in
our system.

In the next subsections we get down to the nitty-gritty of
the model we use to understand the experimental observations.

4.1. The model

In a first order transition, a metastable SC phase can survive
below the first order transition temperature (TC), till a
certain temperature called the limit of metastability (T ∗) is
reached [3, 31, 32]. In the temperature range T ∗ < T < TC

there is an energy barrier separating the SC metastable phase
from the stable insulating state. The height of the energy
barrier, U , can be written as U ∝ f (T − T ∗), where f is a
continuous and monotonic function of (T − T ∗), and vanishes
for T � T ∗. As the temperature is lowered, at T = T ∗, the
SC metastable phase becomes unstable and switches over to
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the stable insulating state as the energy barrier becomes zero in
this case [31]. At T > T ∗ the SC metastable phase can cross
over to the stable insulating state with a probability (p) which
is governed by the Arrhenius equation

p ∝ e− U
kB T (3)

which tells us that the barrier will be crossed with an ensemble
average time constant τ ∝ 1/p. If we imagine an ensemble
of such SC phases with the same barrier U , then the volume
of the metastable phase will exponentially decay with a time
constant τ .

A transition from a supercooled state to a stable state is
an avalanche-like transition, which happens abruptly. Thus a
single crystal or a crystallite, in the case of a polycrystalline
material, would remain in the SC state above its limit of
metastability, and it would switch to the stable state as a
whole when it is pushed over the free energy barrier by an
energy fluctuation or if in the process of cooling the limit of
metastability is attained. Examples for this would be the sharp
M–I transitions along with hysteresis and time dependence
observed in VO, V2O3, Li and Na [6, 17, 18]. It has
been claimed that the presence of defects, strains and non-
stoichiometry can give rise to different T ∗ values for different
crystallites, or it may even produce regions having different T ∗
values inside a single crystal or crystallite [3, 33–35]. We will
call a crystallite or a region within a crystallite that will switch
as a singe entity as a switchable region (SR) in our discussion.

Carrying forward the above arguments to our polycrys-
talline system, which is made up of tiny crystallites, we can
say that it will be made up of a large collection of SRs. Each
SR will have a unique limit of metastability, T ∗, and a volume,
V . The energy barrier U that we discussed earlier, being an ex-
tensive quantity, will be proportional to the volume of the SR
and we can write

U = V f (T − T ∗) (4)

where f is the continuous and monotonic function which
vanishes for non-positive values of its argument. This means
that the various SRs with their different T ∗ and V will have
different energy barriers, which implies that the time constant
τ will spread out and become a distribution of time constants
depending on the distribution of the size and T ∗ of the SRs.
This can give rise to the volume of the metallic state decaying
in a stretched exponential manner with time [36, 37]. This
behavior of the metallic volume with time will lead to the
resistivity also evolving with time in a similar fashion. We shall
see in section 4.2 how the metallic volume and the resistivity
are related to each other.

4.2. Volume fraction calculation

To check the validity of our model through numerical
simulations we need to deal with the volumes of supercooled
and stable phases. Our experimental measurements are of
resistivity and we need to find a way of estimating the volumes
of the different phases from our data. It is well known that the
conductivity of a binary mixture consisting of insulating and
metallic phases depends on their respective volume fractions,

geometries, distribution, and conductivities of the insulating
and metallic phases (σI and σM).

We shall use an easy to use formula given by
McLachlan [38], which is based on a general effective medium
(GEM) theory, for doing this conversion. The McLachlan
GEM equation has been successfully applied to a wide variety
of isotropic, binary, macroscopic mixtures and it has been seen
to work well even close to the percolation threshold [38–40].
If σE is the effective electrical conductivity of a binary MI
mixture, the GEM equation says

(1 − f )
(σ

1/t
I − σ

1/t
E )

(σ
1/t
I + Aσ

1/t
E )

+ f
(σ

1/t
M − σ

1/t
E )

(σ
1/t
M + Aσ

1/t
E )

= 0 (5)

where f is the volume fraction of the metallic phases and
A = (1 − fc)/ fc, fc being the volume fraction of metallic
phases at the percolation threshold, and t is a critical exponent
which is close to 2 in three dimensions [39, 41]. The constant
fc depends on the lattice dimensionality, and for 3D its value
is 0.16 [42].

In order to calculate the volume fraction of metallic
and insulating phases from equation (5), we need their
respective resistivities ρM and ρI as functions of temperature.
ρM(T ) was obtained using ρM = ρ0 + βT , where β is
the temperature coefficient of resistivity estimated from the
resistivity data above the M–I transition. ρI(T ) was calculated
using equation (1) with the parameters obtained by fitting the
resistivity data below 115 K. Using the above information
and the resistivity data of the major loop shown in figure 1,
we calculated the volume fraction of metallic and insulating
phases and it is shown in figure 4. In the cooling cycle the
volume fraction of the insulating phases (V = 1 − f ) slowly
increases on decreasing the temperature below TMI, while in
the heating cycle it remains nearly constant up to about 185 K,
and then drops to zero by 200 K. As can be seen from figure 4
the percolation threshold for the cooling runs occurs at around
144 K. Below this temperature there will be no continuous
metallic paths in the system.

Figure 5 displays the increment of insulating volume
fraction, �V (exp), as a function of time that has been extracted
from the time dependent resistivity data of figure 2. We
see that the maximum time dependence in volume fraction is
seen at 147.5 K, which is not the same as the temperature at
which the maximum time dependence in resistivity is seen.
It is interesting to note that the rate of change of metallic
volume fraction, |dV/dT |, has a maximum around 147.5 K
in the cooling runs (inset of figure 4) and it coincides with the
temperature of the maximum volume time dependence.

During cooling |dV/dT | of the inset of figure 4 represents
the amount of volume that will change from the supercooled
metallic to the insulating state for a unit temperature change.
Now a small change in temperature from T to T − δT
will result in all the supercooled SRs with their T ∗ falling
in that temperature range switching to the insulating state
from the supercooled state. This means that |dV/dT |δT at
T is a good measure of the volume fraction of supercooled
metastable regions which have their T ∗ close to T within a
temperature range δT . Thus |dV/dT | of the cooling curve

5
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Figure 4. Temperature variation of V (=1 − f ), the insulating
volume fraction. The blue circles show the cooling cycle (2 K min−1

cooling rate) and the red squares represent the heating cycle. The
green pluses represent the insulating volume fraction for 0.2 K min−1

cooling rate. The dashed horizontal line with the label VTH (=84%
insulating volume) represents the percolation threshold. The inset
shows the variation of |dV/dT | for the cooling cycle (blue circles,
cooling rate 2 K min−1; green pluses, cooling rate 0.2 K min−1).

represents the volume distribution of the T ∗ in the system.
In coming to the above conclusion we have disregarded
the small fraction of SRs that would be switching due to
the time elapsed in covering the small temperature change.
The justification for this is the fact that the |dV/dT | values
calculated from the 2 and 0.2 K min−1 cooling curves are
practically indistinguishable, as can be seen from the inset of
figure 4.

4.3. Details of the simulation

We carried out Monte Carlo simulations to try to understand
the experimental data. We take a distribution of 105 SRs
which have their volumes (V ) uniformly distributed in a
certain range (V0, Vmax). These SRs were assigned a T ∗ in
such a way that the volume distribution of the supercooled
metallic SRs matches with the |dV/dT | curve shown in the
inset of figure 4. These metallic SRs have an energy barrier
given by equation (4) that separates them from the insulating
equilibrium state. Now we assume that f (T − T ∗) has the
simple power law form f = c(T − T ∗)α for T > T ∗, where
c and α are positive constants, and f = 0 for T � T ∗.
Using equation (3), at any given temperature, the probability of
switching from the metallic to the insulating state in a certain
time interval is taken to be

p = e−aV (T −T ∗)α

T (6)

with a = c/kB.4

4 The time interval referred to here is 3.6 s, which is the time step used in
the simulation. Please note that the parameters we would be extracting by
minimizing the error function in equation (7) depend not only on the sample
properties but also on this time interval.

Figure 5. �V versus time for 140–155 K. The gray symbols show
the values derived from experiments and the black lines show the
simulated values. The inset shows how the parameter a depends on
temperature. The red lines indicate the values we have chosen for the
simulation.

Now to carry forward the simulation we have to estimate
the parameters V0, Vmax, a and α. We decided to first simulate
the time dependence of the insulating volume evolution shown
in figure 5 for this purpose. The time dependence of the
insulating volume is generated as follows. To begin with
we quench the simulated sample from above TMI to the
temperature of interest. In this process all the SRs which have
their T ∗ values above the temperature of interest are switched
from the metallic to the insulating state. Now the switching
probability of each of the remaining metallic SRs is compared
with a uniform random number in the interval [0,1), and if the
switching probability is greater than the random number the
metallic SR is flipped to the insulating state and the increase
in the insulating volume fraction is recorded. This operation is
carried out for each one of the metallic SRs. The time required
for this process is taken to be the time interval at which the
experimental data was recorded, which in our case is 3.6 s.
We repeat this process one thousand (n) times to generate data
for 1 h, which is the time over which the experimental data
were collected. The parameter space of V0, Vmax, a and α was
searched to minimize the error function

Err(V0, Vmax, a, α) =
n∑

i=0

|(�V (exp)i − �V (cal)i )| (7)

where �V (exp)i is the increase in insulating volume fraction
obtained from experimental data, �V (cal)i is the increase in
insulating volume fraction calculated from the simulation and
the subscript i stands for the number of the time step. We
found that as far as the volume of the SRs are concerned it
is the ratio of Vmax to V0 that decides the minimum value of
Err(V0, Vmax, a, α) and not the individual values. So we fixed
V0 to be equal to unity and found that overall Vmax ≈ 6 and α ≈
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0.25 gave the best values for the error function with parameter
a lying in the range 270–400 depending on the temperature.
We refined the simulation by fixing the values of Vmax to be 6
and α to be 0.25 and varying only a. We compare in figure 5
the experimental data (gray symbols) and the simulation (black
lines) and see that the simulation reproduces the experimental
data quite closely. In the inset of the figure we show how the
parameter a varies with temperature5. For further calculations
we fixed the value of a to be 280 up to 146 K; above that
temperature a was taken to vary linearly with temperature as
a = 280 + 14(T − 146) and this is shown as red lines in the
inset of figure 5.

It would have been ideal if all the parameters of the
simulation turned out to be constants. But we find that we have
to introduce some temperature dependence in a to simulate the
experimental results accurately. The temperature dependence
of a could possibly be related to the percolation threshold,
which is at 144 K. Below this temperature the background
matrix for most of the SRs would be insulating while above
this temperature the background would gradually change to a
metallic one as one goes away from the percolation threshold.
We also note that an SR in its insulating state would have a
slightly more distorted crystal structure along with a somewhat
larger volume. Thus we see that the surroundings of an SR
would be very different above and below 144 K; this may have
a bearing on the energy barrier the SR has to cross and this
could result in a temperature dependent a.

In the simulation we quench the sample from above TMI to
the temperature of interest while in the experiment the sample
is cooled at a fixed cooling rate (2 K min−1) to the temperature
of interest. In the simulation we can cool the sample slowly
only if we know the parameters, and since we have no idea
of the parameters to begin with, as a way out we decided
to quench the sample. As we shall see soon, the simulation
and the experimental data agree quite well for the other
experiments and hence it was felt that further refining of the
simulation parameters would not improve the simulation very
much and we decided to stick with the parameters obtained by
quenching.

4.4. Simulation results

We will now describe the simulation results on resistivity
hysteresis and minor loops, cooling rate dependence and
rejuvenation.

4.4.1. Hysteresis and minor loops in resistivity. Hysteresis
and minor loops in resistivity are calculated by first simulating
how the insulating volume evolves as one cools and heats the
(simulated) sample. The cooling was done by lowering the
temperature by 0.12 K first, during which process all those
SRs with their T ∗ in that 0.12 K range are switched to the
insulating state, followed by a time step of 3.6 s, during which
all the remaining metallic SRs are given a chance to relax to the
insulating state. We consider the above procedure to be a good

5 With a = 280 K0.75 μm−3 and taking T − T ∗ to be 1 K, the height of the
energy barrier for a 1 μm3 sized SR turns out to be 24 meV. At 145 K this SR
would flip, on an average, in 7 s, and this looks a very reasonable number.

Figure 6. Simulated results for the hysteresis along with minor
loops. The labeling and color coding are the same as in figure 1. The
cooling rate dependence of resistivity is shown in the inset, where the
symbols represent the experimental data and the lines are from
simulation. Blue star and blue line, 2 K min−1; red circles and red
line, 0.2 K min−1; black line, 1 K h−1 simulation; black pluses,
infinitely slow cooling rate, estimated from experiment.

approximation for cooling at a rate of 2 K min−1. Additional
time steps were added wherever required to take care of
the time spent on temperature stabilization. This process is
repeated as many times as required to complete the cooling
part of the simulation. In the heating part of the simulation
we again take temperature steps and time steps as before, but
it may be noted that a temperature step while heating will
not switch any of the SRs to the insulating state because all
those SRs with T ∗ values falling inside the temperature step
would have already been switched to the insulating state during
the preceding cooling process. During a time step all of the
metallic SRs do get a chance to switch their states, but we point
out that during heating the chance of a metallic SR switching to
the insulating state would decrease drastically with increasing
temperature because the energy barrier is a monotonically
increasing function of T − T ∗ and all the remaining metallic
SRs would have their T ∗ below the turning point, i.e. the
temperature at which the cooling was stopped and heating
started. After the volume simulation is completed we translate
the results back to resistivity using equation (5).

In figure 6 we show the simulated results for hysteresis
and minor loops and we note that they are very similar to
the experimental results shown in figure 1 except for the
sharp transition in the simulation during heating. This can
be attributed to the fact that we have not taken into account
the broadening of the M–I transition due to disorder and finite
size effects in our simulation. It is interesting to note that
the simulated minor loops reproduce quite closely some of the
features of the experimental loops such as the positive slope
of the heating (top) part of loop a and the negative slope at
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the beginning of the heating part of loop c. The heating part of
curve a has a positive slope because in this case most of the SRs
are in their insulating state and the temperature dependence of
their resistivity is the dominating factor which determines its
behavior. On the other hand, the beginning of the heating part
of curve c has a negative slope because in this case most of
the SRs are in the metastable metallic state and the increase of
their resistivity with time is the dominating factor here.

4.4.2. Cooling rate dependence. Simulating the cooling rate
dependence is straightforward. The time steps were fixed at
3.6 s and the temperature steps were adjusted in size to simulate
faster or slower cooling. The results are shown in the inset
of figure 6. It is clear that the experimental data and the
simulation agree very well for 0.2 and 2 K min−1 cooling rates.
We have also shown the simulation result for 1 K h−1 cooling
rate and it is seen to fall in between the 0.2 K min−1 data
and the infinitely slow data. It is easy to see that a slower
cooling rate will result in a higher resistivity because more of
the SRs switch to the insulating state during slow cooling, thus
resulting in a higher resistivity.

4.4.3. Intermediate ageing. Intermediate ageing is also
fairly easy to simulate. We cool the simulated sample at
2 K min−1 to the temperature of interest, do one thousand
time steps to simulate waiting for 1 h, and resume cooling
and so on. In figure 3 we have shown the simulation results
for intermediate ageing and we see that the agreement between
data and simulation is reasonable.

From figure 3 it is clear that on resuming cooling
after an intermediate stop of 1 h the cooling curve merges
with the curve obtained without ageing within about 3 K
or so. When we stop the cooling and age the sample
at a fixed temperature the supercooled metallic SRs with
relatively small U will switch over to the insulating state
at a faster rate on an average. As can be inferred from
equation (4) those SRs will have a small U which have (i)
their limit of metastability (T ∗) close to their temperature (T )
and (ii) a small size. The major contribution to resistivity
change will come from the relatively larger SRs making
the transition from the metallic state to the insulating state.
In the light of this the merger of the cooling curves with
and without ageing within a small temperature change of
about 3 K means that most of the larger SRs which undergo
the transition from metal to insulator during ageing have
their T ∗ within a few kelvin of the temperature of the
sample.

4.5. Predictive power of the model

A model is no good if it cannot predict new results. So to
test our model we decided to do a simulation first and then
see whether experiment will reproduce it. In the simulation
we oscillate the temperature of the sample between 145 and
146 K for 1 h immediately after cooling it from 220 to 145 K.
All temperature variations were done at 2 K min−1. The black
squares in figure 7 shows the results of the simulation. We
see that the resistivity keeps on increasing on repeated thermal

Figure 7. ρ/ρ0 versus thermal cycle when the temperature of the
sample is oscillated between 145 and 146 K for 1 h after cooling
from above TMI. ρ0 is the resistivity of the sample when it reaches
145 K after cooling from 220 K at 2 K min−1. The red circles
represent the experimental results and the black squares represent the
simulation results. We have also reproduced the time dependence
observed at the fixed temperature 145 K, shown earlier in figure 2,
for comparison as a blue line.

cycling; the increase per cycle is larger at the beginning and
slowly it tapers off. We repeated the simulation on the heating
cycle also, cooling the sample first from 220 K down to 85 K
and then bringing it back up to 145 K before starting the
temperature oscillations. No detectable change in resistivity
was seen with thermal cycling.

We expected that during the cooling cycle the temperature
oscillations would disturb the sample and we would get a larger
increase in resistivity than if the temperature were kept fixed
at 145 K. But instead, we find intriguingly that the increase
in resistivity while oscillating the temperature is considerably
less than what one gets at the constant temperature of 145 K.
See the blue line in figure 7. Even more surprisingly, it is less
than that observed at 147.5 K. It will be very interesting to see
if experiment agrees with this prediction.

The red circles in figure 7 show the experimental results
obtained during thermal cycling after cooling the sample from
205 K. One can see that the agreement between the simulation
and the experiment is quite good. We repeated the thermal
cycling after cooling the sample down to 85 K and bringing
the temperature back up to 145 K, just as in the simulation.
Here also the experiment agreed very well with the simulation;
no detectable change in resistivity was found.

The unexpectedly lower resistance rise when the
temperature is oscillated after cooling can be attributed to (1)
the smaller number of SRs available for switching because all
those SRs with T ∗ falling in the range 145–146 K would have
already switched to the stable insulating state the first time the
temperature was lowered to 145 K and (2) a higher average
barrier height which an SR has to overcome because the barrier
height goes as (T − T ∗)α.
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5. Conclusion

Our experimental results and their excellent agreement with
the simulation suggest strongly that while cooling the
physical state of NdNiO3 is phase separated below the M–I
transition temperature; the phase separated state consists of SC
metallic and insulating regions. A metastable metallic region
switches from the metallic to the insulating state stochastically
depending on the closeness of the limit of metastability and the
size of the region. At low temperature, below 115 K or so, the
system is insulating, all the SRs having switched over to the
insulating state. While heating the SRs remain in the stable
insulating state till the M–I transition temperature is reached
and then switch over to the metallic state.

In our study we have developed a physical explanation
of the time dependence effects observed in NdNiO3 based
on phase separation and supercooling. We believe that
the physics developed here may have implications for first
order solid–solid phase transitions in general. We have
shown that our model has predictive power and we feel that
it may serve as a useful template for understanding slow
dynamics in hard condensed matter in such cases where
there is phase separation. The apparently counter-intuitive
simulation prediction in the temperature oscillation experiment
and its experimental confirmation give us confidence that our
model has captured the underlying physics of the problem
in its essence. Further experiments to probe the flipping of
individual SRs are in progress to check the veracity of the
model.
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